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Anderson Localization

=3 i 3 T
H = tz j C; Cj + €; C,; Ci
j—1 hopping random energies fermion number

i.i.d. random local energies from ¢; € [~/ /2, W /2]

Competition between kinetic and random disordered terms

No interactions

Real space localization
w(f)) ~ e_|F_F0|/€

d < 2 for infinitesimal disorder

d > 2 metal/insulator transition at W/

Sapienza et al.,
Science 327, 1352 (2010)

Anderson, Absence of Diffusion in Certain Random Lattices, Phys. Rev. 109, 1492 (1958)



Many-body Localization

From the real space Hamiltonian with interactions

H:thj CIC]' + Z 67;CIC¢+Z V;j C;[CZ-C}C]-
ij i i N——

fermion—fermion inter

to the Fock-space Hamiltonian

H =3, T |8l + 22 Eao |a){a]

atpB S~~~ a =~
state change energies
la) = [ny,n9, ..., npN) T'.5 hierarchical
n,; occupation numbers Fock space is a graph

Altshuler, Gefen, Kamenev & Levitov, Quasiparticle Lifetime in a Finite System : A Nonperturbative Ap-
proach, Phys. Rev. Lett. 78, 2803 (1997)



Many-body Localization

Fock-space Hamiltonian

H=% Ty 100 + 5 Eo el

state change energies

1+, hierarchical
’Oz> = ’7?,1, Mo, ... ,nN>

. Fock space is a graph
1, occupation numbers

Localization in Fock space

\J

| 1 1 \
4

Extended Multi-fractal ? Localized W
Metal Bad metal ? Insulator

Basko, Aleiner & Altshuler, Metal-insulator transition in a weakly interacting many-electron system with
localized single-particle states, Ann. Phys. 321, 1126 (2006)



Many-body Localization

=z [~

Multifractality
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Plan

— (Very short) Physical motivation

1. Anderson & Many-Body Localization
2. Neural Networks®
3. Pure random matrix theory?

— Three kinds of random matrix models

1. Rosenzweig-Porter GOE model
2. Weighted Erdos-Renyi graph

3. Rosenzweig-Porter Wishart model

— Conclusions

lp Gong et al, S. Nechaev et al, several papers; ’p Akara-pipattana & O Evnin, several papers.



Two kinds of random matrices

Rosenzweig-Porter (RP) Weighted Erdds-Rényi graph
Sum of random matrices Fluctuating connectivity & random hops
H=Aa+5pnb v 6
:}’? i3
Motivation

Search of random matrices with (multi)fractal eigenvectors

Venturelli, LFC, Schehr, Tarzia, Replica approach to the generalized Rosenzweig-Porter model, SciPost
Phys. 14, 110 (2023)

LFC, Schehr, Tarzia, Venturelli, Multifractal phase in the adjacency matrices of random Erdds-Rényi graphs,
Phys. Rev. B 110, 174202 (2024)



Two kinds of random matrices

Rosenzweig-Porter (RP) e Weighted Erd6s-Reényi graph

Sum of random matrices Fluctuating connectivity & random hops
H=A + B “u LI
N v/2 :{T "‘
°’ \“u_\ “‘J
Q\ 7 ) t\—; o

Motivation

Search of random matrices with (multi)fractal eigenvectors

Venturelli, LFC, Schehr, Tarzia, Replica approach to the generalized Rosenzweig-Porter model, SciPost
Phys. 14, 110 (2023)

LFC, Schehr, Tarzia, Venturelli, Multifractal phase in the adjacency matrices of random Erdés-Rényi graphs,
Phys. Rev. B 110, 174202 (2024)



The RP Model

Sum of random matrices

Take a diagonal NV x /N matrix A with i.i.d. real elements a; = (O(1) taken

from a p, (a;)

ail 0 0 0
0 an9o 0 0
0 0 aN_—1N-—1 0

0 0 anN N

and a real symmetric /V x /N matrix I3 from the Gaussian Orthogonal Ensemble

T
2B =C + C b11 bi2 bin
bi2 ba2  bas banN
B =
binN-1 -+ ... bN-1N-1 ObN-1IN
b1 N bN_1N bNN

with b;; = O(1) € IR taken from py, (b;£;) o< e /% and py(bi;) o e bii/4



The RP Model

Sum of random matrices
Add them in the form

v
N/2 B

v>1 “perturbation”

= A+

with 7 and  two IR parameters O(1)
& [V the size of the square matrices

Initial motivation: adapt random matrix theory to atomic physics studies
Rosenzweig & Porter, Repulsion of Energy Levels in Complex Atomic Spectra, Phys. Rev. 120, 1698 (1960)

More recently : many-body localization and the hypothetical bad metal phase

Kravtsov, Khaymovich, Cuevas & Amini, A random matrix model with localization and ergodic transitions,
New. J. Phys. 17, 122002 (2015)

Sum of random matrices & applications - free probability
A. Zee, Law of addition in random matrix theory, Nucl. Phys. B 474, 726 (1996)



Density of eigenvalues

Propertiesof H = A +vN~7/? B

Averaged spectral density PN (A)

h o0

1=1

Limits )\; the eigenvalues

— For v > 1 the effect of B is negligible and
Pn (M) is just pa (N)
— In the Gaussian Orthogonal Ensemble (GOE), v = 1 and pq (a;) = d(a;; ), only B counts, and

p(A\) = lim p_(\)isthe semi-circle law psc () = =—=+/4 — A2
N—ooco N 2m

In general

Psc(N) Pa(A)

p(A) |
0 1
B A

Bhe



Level spacings

Propertiesof H = A +vN~7/? B

Level statistics The level spacings s; = A;.1 — A;, normalized by

their mean (s; ), are distributed according to

Limits

— for independent levels, Poisson’'s p.d.f. p(s) =e™*° | G

Paisson 166gy
108 spacings

—in the GOE case, the Wigner surmise

0.5 -

Wigner (GOE) Poisson
p(8> | | >
0 2 8

B A



Eigenvectors

Propertiesof H = A +vN~7/? B

p(A) Psc(A) i Pa(A)
p(s) Wigner 2 Poisson v
Eigenvectors fully extended new i fully localized

—For v > 2, H ~ A and the eigenvectors (wave functions) ¢/ are fully localized
n = O(1) non-zero component

—Fory < 1,H ~ v N ~7/2 B and the eigenvectors 1) are fully extended

n = O(N) non-zero components

—For 1 < ~v < 2, the eigenvectors 1) are localized over a fractal number of sites
1 < n=O0O(N?"7) < N non-zero components

Kravtsov, Khaymovich, Cuevas & Amini, A random matrix model with localization and ergodic transitions,
New. J. Phys. 17, 122002 (2015)



Eigenvectors

Propertiesof H = A +vN~7/? B

|
|
p(\) Psc(A) | Pa(A)
: 1 \
i 1 r
Eigenvectors fully extended 1 fractal ? fully localized i
metal bad metal ? : insulator
: non-ergodic i ] :
ergodic - de-localized : non-ergodic
1,2
i O(L) |-y
. Nl_y ,mmnwmw»wmm /Aéi
Horizontal axis: “site” 7 index ordered accordingto a1 < --- < ap

Kutlin & Khaymovich, Anatomy of the eigenstates distribution... SciPost Phys. 16, 008 (2024)

de Tomasi, Amini, Bera, Khaymovich & Kravtsov, Survival probability in Generalized Rosenzweig-Porter
random matrix ensemble, SciPost Phys. 6, 014 (2019) R(t) = [|(+(t)[(0))|?]u = N—Ps
— 00



Picture

4

} Mini-band GOE

!

Mini-bands and the fractal dimension for 1 < v < 2

Thouless
energy

2

ai—aj

Perturbation theory = \; ~ a; + 4C % >
J(#1)

Average spreading of the eigenvalues = Thouless energy

Er = [P\z - Cbi\}H ~(=W/4) N7 > 1/N

E+  width of the mini-bands with GOE statistics

The number of eigenvectors “hybridized" by the perturbation

Er
(Np(A)~*

support of the eigenvectors of the perturbed matrix [l

4 ~ ~ NP with |[Dy=2—~<1

But no evidence for multifractality in this model




Methods & our results

More details on the eigenvalues

The resolvent

Gn()= L Tr(:I-H)y'= Ly !

with z € C
T2 =N

N poles at z = \; the real eigenvalues of [

Average over [l and take the large /V limit

lim [GN(Z)]H:/CZ)\/ ,0<)\/)

N —00 z— N

which is the Stieltjes transform of the av. density of eigenvalues p with inverse

p(A) =2 lim Im lim [Gy(A —in)lm

77—>O+ N—00




Methods & our results

Replica trick

= —— lim Im {an A—1 }
T n—0+ o\ N( 77) H
L] L] L] L] _er Z — r
with the partition function Z (z) = m /RN ANy e~ 27 (1-H)

Using replicas |In Zn|m = lir% L1In[Z% ]y & saddle-point for N — oo
n—

— usual replica symmetric Ansatz on N ()., = <ra - rb> (difficult) or

— rotationally invariant Ansatz in replica space for the density (simpler!)

(1) = plr ) = & 52 T80 = 7%) = ()

1=1 a=1

Edwards & Jones, The eigenvalue spectrum of a large symmetric random matrix, J. Phys. A 9, 1595 (1976)
Livan, Novaes & Vivo, /ntroduction to Random Matrices — Theory and Practice, arXiv : 1712.07903,
SpringerBriefs in Mathematical Physics 26 (2018)



The Zee formula

The averaged density of eigenvalues

Prediction

After some lengthy but simple steps

0.06 +

0.04 +

. .
py(A) = e nlir& Re C'(\ —in) 002 | |
C(A) =i Ga(A+2iC(N)) e

) Solution for Cauchy p,,
NGy (z)=Tr(A—2zI)~" the global resolvent of A

> N =2000,~v = 1.1
and ( = %Nl_'y

v=10,¢ = 11.7

Evaluate numerically, leading finite size corrections captured &

approximate analytic expression for pN()\) in the limit ¢ < 1 and any p,

Generalization of the Zee formula in Law of addition in random matrix theory, Nucl. Phys. B 474, 726 (1996)

Krajenbrink, Le Doussal & O’Connell, Tilted elastic lines with columnar and point disorder, non-Hermitian
quantum mechanics, and spiked random matrices: pinning and localization, Phys. Rev. E 103, 042120 (2021)



The level compressibility

-1.0 ~05 0.0 05 1.0
. p
I,(a,8) =N ff dA p(A) counts how many eigenvalues fall in the interval

Large deviation function | ; g(s) = lim +1In [e_SIN(_E’E)] can be

N—o0 Hl
&
calculated with the replica method and then get the moments [Ik(—E, E)} -
C
[IQ(—E, E)]
and the level compressibility | y(E) = il
[I(—E, E)}
H

Metz & Pérez Castillo, Large Deviation Function for the Number of Eigenvalues of Sparse Random Graphs
Inside an Interval, Phys. Rev. Lett. 117, 104101 (2016)

Metz, Replica-symmetric approach to the typical eigenvalue fluctuations of Gaussian random matrices,
J. Phys. A 50, 495002 (2017)



Picture recovered

Mini-bands in the intermediate 1 < v < 2 regime

Poisson

x(E)
1| ‘)
GRP (Cauc

AN E \\ i

0.8 F

. = = = Poisson
- -
—— 0.6 | >
\

0.4 | o
== } Miniband GOE Do |
—_— Thouless 1 2 3 4 D
= energy
—— GOE Poisson
=+ Within the Well beyond the bands
1 bands
p— — 9 &
1 [1 (—E, E)}
— H

x(5) = [I(—E, E)]H



Picture recovered

Mini-bands in the intermediate 1 < v < 2 regime

Zoom over small £/

Poisson

FE
L E x(E)
1
—— i : o
—— 0.5 k
=—=GOF
== } Minband GOE —xz(B)
— 0.2 } O Gauss
—1— A Flat
1 . E/oN
—+ Thoul
== [ Thouess p
== d ;v mean level spacing
| o o 1 E
4 E ~ Ep  Scaling limit 1y = 37pa(0) Br
== . 1 2
= X(?/) — [Qy arctany — ln(l + Y )}
- — ﬂ-y

Results: it is universal with respect to p,,



Results so far

Rosenzweig Porter GOE model

— We rederived p(\) using replicas and a rotational symm. Ansatz

— We derived the Zee formula in a simple way
(with finite size dependencies)

— We obtained the level compressibility
— |t satisfies a scaling form which is universal with respect to p,,

— lIs it also universal with respect to p;, ? RP-Wishart, in progress



Two kinds of random matrices

e Rosenzweig-Porter (RP) Weighted Erdos-Rényi graph
Sum of random matrices Fluctuating connectivity & random hops
v
i N/? X/
N
T o

Motivation

Search of random matrices with (multi)fractal eigenvectors

Venturelli, LFC, Schehr, Tarzia, Replica approach to the generalized Rosenzweig-Porter model, SciPost
Phys. 14, 110 (2023)

LFC, Schehr, Tarzia, Venturelli, Multifractal phase in the adjacency matrices of random Erdds-Rényi graphs,
Phys. Rev. B 110, 174202 (2024)



Weighted random graph

Erdos-Renyi

Random graph Hopping
(
1 prob=p/N
Hz’j — % O'z'jtz'j 0 = $ . . /N tz'j GOE
prob = 1L —p
\

A sketch with p = 3

p > 1:a giant component with N o N sites
and O (V) finite size clusters.

Focus on the giant component only p o< p

Note that the red links can have ¢;; ~ 0

For the random graph: Rodgers & Bray, Density of states of a sparse random matrix, Phys. Rev. B 37, 3557
(1988). Semerjian & LFC, Sparse random matrices : the eigenvalue spectrum revisited, J. Phys. A 35, 4837
(2002). Kuhn, Spectra of sparse random matrices, J. Phys. A 41, 295002 (2008).



Eigenvectors

Inverse participation ratios & fractal dimensions

Take the ath eigenvector w@(a) with2 = 1,..., /N at a given energy I~ and

calculate the disorder average IPR = Fractal dimensions 1),

N
Iy = [Z \w§“)\2q] oc N0 (IPR)
1=1 H
D,=1Vgq D, #1,0 D, =0 Vgq
Extended Special Localized
;%
| 0] ) E—
1 l ! ' ! Sloc
N i S /A\




Method & our results

Cavity

The trace of the resolvent matrix Gy (z) = (H — zIy) !
Gh(z) =TrGu(x) =2 (=2 = pv(N)

The cavity Green’s function is the diagonal element on node 7 of the

resolvent of the Hamiltonian H/) with its neighbor 7 removed
Ginj(z) = (HY) = 2Iy_1);"

It satisfies the recursion relation

Gisj(z) = (sz —z— >, H, Gm%z‘(z)yl

meoi\j

and the solution is used as an estimate of the diagonal elements (7;;( 2)

which yield the IPR I,(E)  lim 77(1—1% > |Gii(2)]4

n—0+t




Local density of states

Definition & properties

a L.
pi(B) = Y [ PO(E = Xo) = = lim ImGji(2)
« T n—0+t
1 ol 1
Pp,2) = | % 3 6(p— 7 ImGu(2)) |
1=1
Extended Special Localized
In(P(p)) In(P(p)) In(P(p))
/\ —(145)
‘ . IR In(p)
In(p) n o 01) 1/ - n 1/n i

Symmetry P(p) = p 2 P(1/p) respected

Mirlin, Fyodorov, Mildenberger & Evers, Exact Relations between Multifractal Exponents at the Anderson
Transition, Phys. Rev. Lett. 97, 046803 (2006)



Fractal dimensions

In the special regime

From the analysis of the tail obtained with the cavity method

( 5_1

_(148) 1 120
P(p)~p = Dg=4q 4
] q<p
22 e ' 1
2 08¢t
18 ¢ -
16/ | a
i & 04+ 5 .
. | 02} pie —
1.2 % (a) gig EE .
. . _ _ _ _ p=18 —. g : .
1975 52 25 3p 35 4 45 5 b3 1 15 2 25
q

As p increases the graph becomes more and more connected, [ increases, and the

GOE fully extended behavior is approached with ), — 1 until larger and larger g



Fractal dimension

Cavity method vs. exact diagonalization

Cavity method vs. exact diagonalization

Horizontal dashed line vs. data points
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Weighted random graph

The phase diagram

1.5 Anderson
Localization
1 — — - m e e e e e - - ]
Small clusters
0 0.5 1 1.5 2
E

LFC, Schehr, Tarzia & Venturelli, Multifractal phase in the weighted adjacency matrices of random Erdds-
Rényi graphs, Phys. Rev. B 110, 174202 (2024)



Multifractal phase

Mechanism

Graph heterogeneity —
effective fragmentation due to very weak links



Multifractal phase

Robustness

Re-wiring = eliminate rooted trees
Re-weighting = re-draw h;; < vinto h;; > v



Two kinds of random matrices

Rosenzweig-Porter (RP) Weighted Erdos-Reényi graph
Sum of random matrices Fluctuating connectivity & random hops
H=A+ 5B
1<y <2
()2 1—q)D,
Properties “% | q}H o< N~
A) = pg(A _
PN =pa(V) —1 428(E)
p(s) o se= TS /4 Dy =
1 q < B(p, E)
97 o NP2
Multifractal phase
D2 =7 — 2

Venturelli, LFC, Schehr, Tarzia, Replica approach to the generalized Rosenzweig-Porter model, SciPost
Phys. 14, 110 (2023)

LFC, Schehr, Tarzia, Venturelli, Multifractal phase in the adjacency matrices of random Erdds-Rényi graphs,
Phys. Rev. B 110, 174202 (2024)



Work in progress




Wishart matrices

Universality of ' with respect to B ?

-
Take a rectangular /N x 1/ random matrix D with pg(d;;) o< e di3/2

(Ginibre ensemble)

Build the square N x N symmetric random matrix W = M —! DD’

Could be an estimate of a correlation matrix

The averaged density of eigenvalues of W is the Marcenko-Pastur law

VA=) (E- = N)
2T\

pmp(A) = a + (1 =)Mol - a)

with & = (1 + @_1/2)2 and o« = M /N

Wishart The generalised product moment distribution in samples from a normal multivariate population, Bio-
metrika, 20A, 32 (1928). Marchenko & Pastur, Distribution of eigenvalues for some sets of random matrices,
Matematicheskii Sbornik 114, 507 (1967). Zavatone-Veth & Cengiz Pehlevan, Replica method for eigenva-
lues of real Wishart product matrices, arXlv:2209.10499



Wishart matrices

Density of eigenvalues

s = . a =2
B
. s .
-------- a=206
03| N o - a1
1 ) T =1000
P | :
0.2
0.1
0.0 3
0 2 4 6 10 12 14 16

8
A

Numerics vs. analytic expression



RP with Wishart matrices

Questions

Build the Wishart-Rosenzweig-Porter model A + —+— W

— What is the composition rule for the av. density of eigenvalues ?

Extension of the Zee formula.

— Is the level compressibility ) following the same universal law as
for the RP - GOE model ?

In collaboration with V. Delapalme, D. Venturelli & M. Tarzia



Multifractal phase

Return probability & wave function overlap

0 (1]
. _ (@ v B, B \ (©) . @
g B, VOl g B - i - [ ]
; -1 e, MU T -1 iy
< 10 ~ =, 10 2 2 e
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/B8 W/ 5E 104 1073 102 107! 22 24 26 28 3 32 34 36 38
[ p

FIG. 10. Overlap correlation function K,(w;E), see Eq. (36), for E = 0.4 and p = 2.4 (a), p = 2.8 (b), and p = 5 (¢). In panels (a)
and (b) the energy separation « is rescaled by the Thouless energy 6° — with a p-dependent exponent € € [0,1] — and the y-axis is
rescaled by N'™P2 — where D, = B — 1, with 8 given in Fig. Eka). Continuous lines correspond to the results obtained by solving the
self-consistent cavity equations, while symbols show the exact diagonalization results. The dashed lines in panels (a) and (b) represent
the power-law decay of correlations for w > 6° as K,(w) o< (w/6°)™, with a p-dependent exponent u. The horizontal gray line in
panel (c) corresponds to the Wigner-Dyson behavior for GOE matrices, K,(w) = 1. In panel (d) we plot our numerical estimates for the
exponents € (squares) and u (circles) varying the average degree p, showing that a standard fully-delocalized behavior (with €, u — 0)

is progressively reached upon increasing p.

1
0.8
w06

04

0.2

l-p —S—

@

¥
G
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15 2 25 3 35 4 45 5 55
P

FIG. 12. Return probability, see Eq. (41), as a function of time, for p = 2.4 (a), p = 3.6 (b), and p = 5 (c). The dashed lines show
the power-law decay of the return probability as R(t) o< t~°. In panel (d) we plot the exponent ¢ upon varying the average degree p,
showing that its value is very close to { ~ 1 —u within our numerical accuracy, u being the exponent that describes the power-law decay

of the overlap correlation function K,(w) — see Figs.|10(a-b).



Results

The averaged density of eigenvalues

After some lengthy but simple steps we obtain

1
p(A) = —— lim ReC(\ —in)

7TC n—0+

C(\) = i Ga(A + 21 C(N))

V2

with (7, the global resolvent of A and ( = AN -1

The latter eq. can be solved exactly for some p,, e.g. Cauchy.

Leading finite size corrections captured

Approximate p () for ¢ < 1 and any p,,

Generalization of the Zee formula in Law of addition in random matrix theory, Nucl. Phys. B 474, 726 (1996)

A. Krajenbrink, P. Le Doussal and N. O’Connell, Tilted elastic lines with columnar and point disorder, non-
Hermitian quantum mechanics, and spiked random matrices: pinning and localization, Phys. Rev. E 1083,
042120 (2021)



Results

The averaged density of eigenvalues

o(A)

0.3
0.25
0.2
0.15 +
0.1+t
0.05 ¢

N = 2000, v =1.1

o(A)
Prediction 0.06 . Prediction
Cauch q h Cauch
Y ?f \S Y
0.04 \
0.02
/
0 - =
—-20 —10 0 10 20
(b)
¢ =11.7
v =10
(=L
- 4N



Results

The level compressibility

The # of eigenvalues in the interval [, 3] is the random variable

B
Ia,8)= [ ax oY)

The level compressibility is defined as

_ RN [PEAN]E — T(EA V)R
XA = ki(\) (=2 A)]m

Limits
— Pure Poisson, typical level spacing O(1); x(A) ~ 1 for small A and x (\) ~ O for large A

—Pure GOE (A = 0), x(A > N~1/277/2) — Oand x(A < N~1/277/2) - 1

Metz & Pérez Castillo, Large Deviation Function for the Number of Eigenvalues of Sparse Random Graphs
Inside an Interval, Phys. Rev. Lett. 117, 104101 (2016)

Metz, Replica-symmetric approach to the typical eigenvalue fluctuations of Gaussian random matrices,
J. Phys. A 50, 495002 (2017)



Results

The level compressibility

1n[€—sl(—>\,>\)]

H

We calculated the cumulant generating function | F)(s) = %

In the interesting regime 1 < v < 2 we found
—x(A) ~0 for A< Ep within mini-bands (like not-too-small A GOE)

—x(A) ~1 for A> Ep across mini-bands (like small A Poisson)

A\ 2
— In the scaling limit y — 279 (0)C with ( = 4]\1;7_1, a universal form
_ 1 5
X(y) = W—y[Qy arctan(y) — In(1 + 7))

with Y (y — 0) = 0and X(y — o) = 1

Numerical tests of universality (independence of p,) are under way



Detalls

On level compressibility
The # of eigenvalues in the interval [, 3] is
I(o, ) = 32ty [0(8 = As) = O = X))
The Heaviside function can be represented as

f(—z) = 5= lim [In(z +in) — In(z — in)]

i n—07+

> 0(a—\;) = 5= lim {Indet[H — (a — in)I] — Indet[H — (a + in)I]}

i=1 n—0~+

+ replica trick



Level compressibility

Sketch of the various scales

X(A) A

1




Methods

The trace of the resolvent matrix G(z) = (zI — H) ! is the global resolvent

_ 1 1 —1 p(N)
G(z) = 5TrG(z) = % .1(2 — Ai) o AN PR,
Inverting
P =~ tim T Jim_ G(A—in)
1

0
_ : SN | - .
= o M T Jim 5% 2 O =0 =)

With the Edwards-Jones Gaussian representation

1 0

PVl = =~ lim, Tm 2 ln 20— )
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Methods

The replica trick
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For N — o0 the calculation reduces to the saddle-point evaluation of | Z" |y

— it can be done with a replica symmetric Ansatz on N (), = (r® - rb> as usual

— with a rotationally invariant Ansatz in replica space for the density
N
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such that at the saddle point level it only depends on the modulus /(7)) = 7i(7)
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The second path turns out to be more convenient
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